DoE gets smart with $50m grid handouts
How smart are smart grids? Could they do the super hard Sudoku in the Sunday papers? Do they have doctorates in astrophysics? Can they get into a packet of digestives without using their teeth?
Greenbang doesn’t know. She’s never had one around for tea. But what she does know is that the US Department of Energy is pretty damn keen on them. So keen, in fact, that it’s going to spend $50 million over five years on nine projects that it hopes will make the whole grid more efficient and “aim to reduce peak load electricity demand by at least 15 percent at distribution feeders—the power lines delivering electricity to consumers”.
All this sort of stuff will become more and more useful to folks for managing electricity demand when electric cars start sucking out power from the grid, and people with home solar systems start chucking it back in.
Here are the lucky smart grid winners, courtesy of the DoE:
Allegheny Power will develop the “West Virginia Super Circuit” in conjunction with West Virginia University (WVU) Research Park, WVU Advanced Power and Electricity Research Center, North Carolina State University, Research and Development Solutions, Augusta Systems, Inc., and Tollgrade Communications. They will improve distribution system performance, reliability, and security of electric supply through the integration of distributed resources and advanced technologies. (Duration: 5 years; Cost: $5.4 million
federal/4 million non-federal)ATK Launch Systems, along with partners Rocky Mountain Power and P&E AUTOMATION, will demonstrate load reduction through an integrated network of diverse renewable generation technologies and intelligent automation. The project will integrate renewable generation and energy storage resources, including a novel compressed-air generation technology, wind-turbines, heat recovery systems, solar trough booster technology, a steam turbine, and hydro-turbine resources. (Duration: 5 years; Cost: $1.6 million federal/$2 million non-federal)
Chevron Energy Solutions will collaborate with Alameda County, PG&E, VRB Power Systems, SatCon Technology Corporation, the University of Wisconsin, the National Renewable Energy Laboratory, Lawrence Berkeley National Laboratory, and Energy and Environmental Economics to significantly reduce peak load and measurably improve power reliability at the Santa Rita Jail. The project will integrate solar energy, fuel cell, energy storage and control systems. (Duration: 3 years; Cost: $7 million federal/$7 million non-federal)
The City of Fort Collins, in cooperation with Larimer County, Colorado State University, InteGrid Lab, Community Foundation of Northern Colorado, the Governor’s Energy Office, Advanced Energy, Woodward, Spirae, and Eaton, will research, develop, and demonstrate a 3.5 megawatt coordinated and integrated system of Mixed Distributed Resources in Fort Collins to Achieve a 20-30 percent peak load reduction on multiple distribution feeders. (Duration: 3 years; Cost: $6.3 million federal/$4.9 million non-federal)
Consolidated Edison Co. of New York, Inc., along with Verizon, Innovative Power, Infotility, and Enernex, will develop and demonstrate methodologies to achieve true interoperability between a delivery company and end-use retail electric customers, enhancing the reliability of the distribution grid and the efficiency of its operations. (Duration: 3 years; Cost: $6.8 million federal/6.2 million non-federal)
The Illinois Institute of Technology (IIT) will collaborate with Exelon/ComEd, Galvin Electricity Initiative, S&C Electric, and others to develop and demonstrate a system that will achieve “perfect power” at the main campus of IIT through the implementation of distributed resources, advanced sensing, switching, feeder reconfiguration, and controls. This effort will be replicable at any municipality-sized system. (Duration: 5 years; Cost: $7 million federal/$5.2 million non-federal)
San Diego Gas and Electric will develop a dispatchable distribution feeder for peak load reduction and wind-farming in conjunction with: Horizon Energy Group, Advanced Control Systems, Pacific Northwest National Laboratory, the University of San Diego, Motorola, and Lockheed Martin. The project aims to prove the effectiveness of integrating multiple distributed energy resources with advanced controls and communication systems to improve stability and reduce peak loads on feeders/substations. (Duration: 3 years; Cost $6.9 million federal/$4 million non-federal)
The University of Hawaii, in cooperation with General Electric, Hawaiian Electric Company, Inc., Maui Electric Company, Columbus Electric Cooperative, New Mexico Institute of Mining and Technology, Sentech, and UPC Wind, will explore the management of distribution system resources for improved service quality and reliability, transmission congestion relief, and grid support functions. (Duration: 3 years; Cost: $7 million federal/$8 million non-federal)
The University of Nevada will collaborate with homebuilder Pulte Homes, Nevada Power Company, and GE Ecomagination to address the construction of energy efficient homes that overcome electricity grid integration, control, and communications issues by building integrated photovoltaic systems, battery energy storage, and consumer products linked to advanced meters that enable and facilitate an efficient response to consumer energy demands. (Duration: 5 years: Cost: $6.9 million federal/$13.9 million non-federal)